UNDER THE SEA

 Hello ladies and gents this is the Viking telling you that today we are talking about

Greater blue-ringed octopus

File:Hapalochlaena lunulata2.JPG

The greater blue-ringed octopus (Hapalochlaena lunulata) is one of four species of highly venomous blue-ringed octopuses belonging to the family Octopodidae. This particular species of blue-ringed octopus is known as one of the most toxic marine animals in the world.The greater blue-ringed octopus, despite its vernacular name, is a small octopus whose size does not exceed 10 centimeters, arms included, for an average weight of 80 grams. 

Its common name comes from the relatively large size of its blue rings (7 to 8 millimeters in diameter), which are larger than those of other members of the genus and help to distinguish this type of octopus. The head is slightly flattened dorsoventrally (front to back) and finished in a tip. Its eight arms are relatively short.

There is variable ring patterns on the mantle of Hapalochlaena lunulata with varied coloration in correlation to their ambient environment, from yellow ocher to light brown or even white-ish (when inactive). The blue rings, which number around 60, are spread throughout the entirety of its skin. 

The rings are roughly circular in shape and are based on a darker blotch than the background color of the skin. A black line, with thickness varying to increase contrast and visibility, borders the electric blue circles. The blue rings are an aposematic adornment to clearly show to all potential predators that the octopus is highly venomous. The octopus also has characteristic blue lines running through its eyes.

Flashing behavior

The octopus usually flashes its iridescent rings as a warning signal, each flash lasting around a third of a second. To test the theory if blue-ringed octopuses could produce their own blue iridescence, scientists bathed the octopus samples in a wide range of chemicals that were known to affect chromatophores and iridophores. 

It was found that none of the chemicals used affected the octopuses ability to produce its blue rings. It was also found that after examining the blue rings (specifically the iridophores) were seen to shift to the UV end of the spectrum which is a defining characteristic of multi-layer reflectors. It was also found that the iridophores are nicely tucked into the modified skin folds, kind of like pouches, which could be contracted by the muscles that connect the center of each ring to the rim. 

When the muscles then relax, the muscles around the perimeter of the ring contract which in turn causes the pouch to open to expose the iridescent flash. The octopus can then expand the brown chromatophores on either side of its ring to enhance the contrast of its iridescence. After all of the testing was complete, it was determined that the muscle contracting mechanisms was key to how the blue-ringed octopus portrayed its iridescent signaling success.

and as always have a chilled day from the Viking

Comments